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A Stochastic, Local Mode Treatment of High-Energy Gas—Liquid Collisions’
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The scattering angle distributions of high-energy molecular beams at the surfaces of three different liquids
are treated in terms local mode theory. This is achieved by setting up a stochastic process modeling the effect
of a superposition of local mode surface displacements on the incoming particle’s trajectory. The results are
found to be in good qualitative agreement with experiment, and directions for further work are indicated.

1. Introduction

It is often fruitful to consider the gas—liquid interface within
the continuum regime, even when events on the scale of
individual molecules are of interest. The usual approach is
through capillary wave theory, which was introduced by Buff,
Lovett, and Stillinger in 1965.! The interface is regarded as a
dividing surface, at which the bulk liquid-phase density
undergoes a sharp transition to gas-phase values and whose
location has a normal distribution around O displacement. The
theory assumes that displacements of this surface from its
average position are restored by the liquid’s surface tension and
that their variation with distance along the surface can be
represented by a Fourier series of sine or cosine functions, which
constitute the “capillary waves” of the theory. This form of
capillary wave theory is conceptually satisfying and has had
modest success in modeling reflectivity data,? but it falls short
of explaining some important interfacial phenomena such as
surface roughness® > and interfacial width.®

At very short wavelengths, the sine or cosine functions lose
their physical significance because the component waves are
damped by viscosity at a distance much shorter than one
wavelength; therefore, the component waves are merely one of
many mathematical basis sets that could be used to describe
the shape of the surface displacement as a function of distance
along some arbitrary axis.” Solutions of the Navier—Stokes
equation in this “local mode” regime can be obtained in the
form of Bessel functions, with arbitrary displacements of the
dividing surface being expressed as a Fourier—Bessel series.>$™1°
Thus, the local mode theory describes small-scale displacements
of the surface as a superposition of Bessel functions. The basic
idea is that small-scale surface disturbances occur when the
thermal motion of molecules or small groups of molecules at
and below the surface produce a sudden, localized, positive or
negative displacement of the surface. When the wave equation
is set up in this framework, Bessel functions are obtained as
the radial solution for the surface displacement,? and it can be
shown’ that a single local mode displaces the dividing surface
by a distance

&(r) = constant X c(#)J(kr) (1)

after time ¢ from the initial impact, where Jy(kr) is the Bessel
function, r is the radial distance from the center of the
displacement, and
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Here, 17, p, and y are the viscosity, density, and surface tension,
respectively, of the liquid. The quantity k, which corresponds
to the wave vector of capillary wave theory, is inversely
proportional to the width of the displacement and controls the
rate of rise and decay of the local mode; the most rapid
displacements are also the most narrow. At the large values of
k that are relevant to this study, 2k?n/p > ky/2#, so that a local
mode displacement is characterized by a rapid rise, followed
by a much slower fall. The root-mean-square (rms) displacement
of a point on the dividing surface, with k averaged over all
values between the transition to local modes and the upper limit
set by the molecular diameter, is estimated to be 2—3 A for
typical liquids,? which sets 12—18 A as approximate bounds (3
rms displacements or 99% confidence limits for locating the
dividing surface) on the interfacial width. If we confine our
attention to the largest values of k, these ranges are correspond-
ingly smaller. In practice, we shall use interfacial widths
provided by molecular dynamics simulations (see Table 1),
which, at present, are limited to short time scales and high k
values.

Local mode theory has been successful in accounting for
small-scale surface roughness measurements'® but still requires
testing against other experimental data. Here, we show that local
mode theory predicts scattering angle distributions of atoms from
liquid surfaces that are in reasonable agreement with high-energy
molecular beam data obtained below the specular angle when
the Bessel function bases are explicitly considered as the
scatterers. To achieve this, we employ a simplified model which
assumes that the incoming particles are of sufficiently high

TABLE 1: Parameters Used in the Scattering Angle
Calculations

glycerol (298 K) squalane (290 K) PFPE (290 K)

0; (degrees) 5018 652 65"
w (A) 4.0 6.0%2 5.04
o (g cm™) 1.26" 0.81" 1.90%5¢
7 (mPa s) 1400 3423 4902
y (mN m™) 63! 262 194¢

“Estimate at 298 K (Kohler et al.??). ® Estimated at 0 external
pressure from three measurements at different external pressures
(Table 4, listing x = 0, in Tomida et al.?’). ¢ Value at 293 K.
4 Average of glycerol and squalane values. ¢ Value for DuPont
Krytox 1525, which has a similar density and viscosity as Krytox
1625 PFPE.?
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energy that the effect of the gas—liquid interaction potential on
the beam’s trajectory can be ignored and that the particles scatter
elastically from the surface. The latter assumption will appear
severe to anyone familiar with the field because it is well-known
that even high-energy particles undergo extensive energy transfer
upon colliding with a liquid surface.!! However, it is also known
from experimental'? and simulation studies'? that the shapes of
scattering angle distributions of high-energy beams essentially
derive from the geometry of the surface itself. Our model
involves formulation of a stochastic process describing which
local mode on the surface intersects the molecular beam at time
t and obtains the most probable angle of deflection of the beam
from the slope of the local mode at the intersection. Since the
underlying model is simplified to the extent that it does not
account for inelastic or low-energy scattering, this work is
possibly best regarded as a test of local mode theory.

2. Methods Section

2.1. Basic Equations. In its original form, local mode theory
presents some mathematical complications which require ap-
proximation. We restrict the analysis to two dimensions
(horizontal along the surface and vertical across the density
profile), which is adequate for modeling experimental in-plane
scattering distributions. This is possible because the local modes
responsible for the scattering must be centered on the plane
containing the beam, the point of impact on the surface, and
the detector. If a local mode were centered slightly out of this
plane, scattering would occur on either side of the plane and
would not be seen by the detector. Since the shape of the
displacements in eq 1 will be difficult to handle when developing
a simple probability law for the stochastic process (see section
2.2) and the fact that eq 1 will need to be solved for the argument
kr, we use Newman’s parabolic approximation for the Bessel
function'

Jolkry =1 — %kzrz (3)
This approximation holds for —2.405 =< kr =< 2.405, which
implies that all scattering occurs within the first zero of the
Bessel function. We set k = 10° m™!, which is of the same
order of magnitude as the upper limit of the k spectrum.’ This
supposes that the only significant gas—surface interactions occur
with local modes of the same order of size as the incoming
molecule. This assumption is rather drastic with a continuum
model but is mitigated by the experimental observation that the
liquid surface becomes markedly less rough near the upper limit
of k> Also, although there would be a bumpy atomic topology
along the local mode surface at high &, these bumps would be
a relatively unimportant feature of the overall local mode
geometry. The essential difference between molecular beam
scattering from a gas and that from a liquid is that scattering
from a liquid involves the interaction of the beam particle with
a number of surface and even subsurface molecules almost
simultaneously, so that much of the bumpiness of the surface
is averaged out. We return to this point in section 2.3. Negative-
going local mode displacements are also neglected, which
simplifies formulation of the stochastic process in section 2.2,
at the price of eliminating a major source of multiple collisions
with the surface.

With these approximations, the constant in eq 1 may be
estimated. Let w be the width of the interfacial region (resulting
from local modes with k ~ 10° m™") and let ¢ be the value
of c(#) at the turning point of the mode. Then, as r — 0 and c(%)
— Cmax» € — W, by assumption. By eqs 3 and 1, this limit gives
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constant =

“)
Cmax
As noted above, w is to be estimated from the widths of
interfacial density profiles reported in the molecular dynamics
simulation literature. Since the short simulation times prevent
local modes with small k from occurring, the density profile is
necessarily averaged over motions corresponding to large k
values. The width of such a profile should therefore correspond
fairly closely to the maximum amplitude of a local mode at the
upper end of the k spectrum. In addition, it seems unlikely that
the short simulation times could generate a velocity potential
for a substantial, negative-going displacement at the surface.
Note that, within the superposition picture, the “time”
argument in c(f) is not the same time that is recorded in the
laboratory. Rather, it is the time since the start of the local
mode’s displacement from 0. Since each local mode in the
superposition rises and falls independently of the others, this
parameter will have a different zero for each local mode. To
make the distinction clear, the argument ¢ is replaced by s. In
addition, the location a of the local mode’s center relative to
an arbitrary origin on the surface will be important; therefore,
we need to replace r with r — a in eq 3. Hence, from eqs 3, 4,
and 1, the displacement of the surface by local mode a at time
s into its lifetime is

e,(r.s) = w@(l L - a)2) (5)
cmax 4

2.2. Formulation of the Stochastic Processes. To model
the effect of a superposition of local modes, each evolving
according to eq 5 with distinct ¢ and various s, on the incoming
particle’s trajectory, we formulate the stochastic process (A,,C)),
t € T, which gives the local mode origin a and function c(s)
encountered by the incoming molecule at time ¢ as the respective
components. The stochastic processes will be distinguished from
their counterparts in the preceding equations by writing them
with capital Roman letters. As will be shown, specification of
the probability law on (A,,C,) will lead to a stochastic process
modeling the local mode slope encountered by the incoming
particle’s trajectory, which in turn is used to calculate the
scattering angle at time 7.

We proceed to put a realistic probability law on (A,,C)).
Rigorously, the parameter space T should be taken as the half-
line [0, <), but for simplicity, we use the set of discrete indices
{0, 1, 2,...} and assume the time step to be vanishingly small.
Consider a single projectile traveling toward the liquid surface
on a fixed, straight-line trajectory, which makes an angle 6; to
the surface normal and terminates at the origin on the surface.
It is assumed that once within a distance w of the surface, the
trajectory is intersected by a local mode at some point into its
oscillation. Let (A,Cp) be given as an initial condition. Then,
at time ¢ = 1, the trajectory will either be intersected by a new
local mode with probability p or will intersect the next segment
of the current local mode’s oscillation, with probability ¢ = 1
— p. If the former event occurs, it is required that A; > A since
the local mode at Ay blocks access to modes lying behind it. It
is also required that C, is such that the top of the local mode at
A, has just intersected the trajectory. The probability law then
continues in this fashion for = 2 onward. A boundary condition
is also required, for if the trajectory continues to intersect a
single local mode, there will come a point where that local mode
slips below the particle’s trajectory. At this point, the trajectory
is allowed to proceed behind that local mode, where it is
intersected by a local mode with Ay < A,—; at a random point
into its oscillation (i.e., Cy is a uniform random variable). In all
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Figure 1. A representative segment of a sample path of (4,,C;), simulated with parameters for glycerol at 298 K (see Table 1) and p = 0.01. The

C, component is plotted as C/cn,x to ease interpretation.

cases the domain on Cj is restricted to the segment of the
oscillation for which the local mode A intersects the trajectory.
The simplicity of this probability law results from the ap-
proximation of the Bessel function by a parabola in eq 5; the
use of a convex function with compact support eliminates the
need to account for the intersection of the beam by maxima
beyond the center of the displacement. The parameter p
essentially relates to the frequency at which new local modes
intersect the beam trajectory and can be estimated by a statistical
mechanical treatment of thermal fluctuations in the bulk liquid.'®
To avoid introducing more assumptions, we leave p as an
adjustable parameter. The nature of the sensitivity of the
calculated results to p does not suggest that this results in any
serious ill-definition of the model (see section 3).

A representative segment of a sample path of (A,C)) is
shown in Figure 1, using parameters for glycerol at 298 K
(see Table 1), p = 0.01, and the simulation conditions
described at the end of this section. The A, component, which
identifies the local mode intersecting the trajectory at time ¢,
is seen to undergo step-like fluctuations. When the trajectory
is intersected by a new local mode in the superposition, A,
undergoes a step increase to a local mode lying in front of
the previous one, and when the current local mode slips below
the trajectory, A, makes a step decrease to a local mode lying
behind the previous one. The time evolution of the intersect-
ing local mode is described by the C, component, which also
undergoes step-like fluctuations, although during each step,
it follows the course of the deterministic function c(s).
Accordingly, when A, undergoes a step increase, C, takes on
the first value of c(s), which permits that local mode to
intersect the trajectory. In this case, this value is always ~cpnax
as the rising phase of c(s) is faster than the time step used in
these calculations. Similarly, when A, undergoes a step
decrease, the next value taken on by C, is a random value of
c(s), subject to the condition that the local mode at A, still
intersects the trajectory. Since the sample paths of the C,
component spend considerable time behaving as the classical
function c(s), the term “stochastic process” is being used
rather loosely in this work. Note that the (A,,C,) depend only
on the state of the current local mode intersecting the
trajectory and are otherwise independent of the history of
the system. This is an approximation because the long fall
time of each local mode should have a prolonged influence
on the trajectory. In a crude sense, the Markov assumption
is being employed.

From (A,,C)), two more-useful stochastic processes may be
specified, namely, the local mode displacement encountered at
time ¢, defined by

= I
0 R 2/k a.t2lk

'm:

Figure 2. Calculation of E, and R, following the shift of the origin by
2/k. The incoming particle’s trajectory is represented by a dotted line
and makes an angle 6; to the surface normal.

CZ

B =w—(1 - %#(R, - 4)) ©)

max
and the local mode slope encountered at time ¢, given by

—wk’C

G, = ‘R, — A) (7

! 2c

max

(i.e., the partial derivative of eq 5 with respect to r, as a
stochastic process), where R, is the distance along the horizontal
axis from origin to the point on the local mode encountered at
time 7. In order to achieve this, we show that R, is a well-defined
function of (A,,C)). First, observe that all local modes from —2/k
from the origin to some distance ay,, may intersect the
trajectory. This follows since, under Newman’s approximation,
kr = —2 at the intersection of the horizontal axis for all c(s).
Now, assume that the local mode at a,,,x can only intersect the
trajectory at ¥ — a = 0 and c(f) = cnax (i-€., at full displacement).
Let y be the distance from the origin to the top of this local
mode when it is fully displaced. Then, by these arguments and
eq 5, w=ysin(@/2 — 6;) =y cos 0; and a,,x =y cos(w/2 —
0;) = y sin 6;, which gives a,,.x = w tan 0;. Next, it will prove
fruitful to shift the origin by 2/k units, such that the trajectory
now terminates at point 2/k on the surface and that all local
modes between a,,x + 2/k and 0 may intersect the trajectory.
From Figure 2, it is evident that E, and R, are

E, = Z,sin(w/2 — 0,) = Z,cos 0, (8)

and
R, = Z,cos(n/2 — 0,) + 2/k = Z,sin 0, + 2/k  (9)
respectively, where Z, is the distance from point 2/k on the
surface (the old origin) to the part of the trajectory struck by

the local mode at time f. Substituting eqs 8 and 9 into eq 6
gives
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Figure 3. Calculation of the final scattering angle 6. The particle’s
trajectory, AB, is intersected by a rising local mode at point C. The
trajectory is reflected along a tangent to the point encountered on the
local mode (given by G,), producing the reflected trajectory CD. The
detector moves along the outer semicircle and is assumed to be such a
great distance from the surface that d, the length of CD, is essentially
the radius of the semicircle. 6; is then calculated from elementary
trigonometric considerations. The local mode is not drawn to scale for
clarity.
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When A, = 2/k, the acceptable solution must go to 0 as C, — 0,
which is satisfied by the positive solution of eq 10. Because of
its length, this solution will not be quoted here. With this
expression for Z; in terms of A, and C,, eqs 9, 6, and 7, E, and
G, are fully specified.

All of the calculations reported here simulate (A4,,C,) for 10
time steps of 0.1 ns length, with each local mode separated by
a distance a,,,/500, and initial conditions Ay = —2/k and Cy =
cmax- In every case, output from the first 100 time steps has
been removed to avoid possible spurious behavior during the
early stages of the simulation. All calculations were performed
with R 2.4.1,'® and all codes are available upon request.

(10)
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2.3. Calculating the Scattering Angle Distribution. The
encountered slope G, is used to calculate an elastic scattering angle
distribution by reflecting a unit vector coincident to the molecular
beam across a tangent to the surface, assuming a structureless,
spherical projectile. Our approach is shown diagrammatically in
Figure 3. The distribution is constructed as a histogram of the
scattering angles 6; produced by the sample path of G, Since
discussion of the following results does not require the cumbersome
equations produced by this method, their derivations are left to
the Supporting Information. The large number of time steps (10°)
used in simulating (A,,C;) ensures that the predicted scattering angle
distributions are not affected by the variance of the (4,,C;) sample
paths, which was found to have a noticeable effect for simulations
using fewer than ~10° time steps.

In this treatment, 6; will never exceed the specular angle
(where 6; = 0,). This occurs because, in putting a probability
law on (A,,C)), it was assumed that the very top of a rising local
mode is the first segment to intersect the projectile’s trajectory
when the trajectory changes to a new mode, and an incoming
particle can only ever collide with the very top of the local mode
or the side closer to the incoming molecule. This restricts G, to
0 or negative values (i.e., ineq 7, R, — A, = 0 for all #), which
in turn only allows reflection at or below the specular angle.
This is an approximation because, for all a = 2/k, the first part
of the rising local mode to intersect the trajectory will be a small
segment on the side further from the incoming molecule, even
in the absence of an attractive potential. For a beam striking a
glycerol surface, the most negative slope that could be encoun-
tered would occur on a fully displaced local mode centered at
0, which gives a lower-bound slope and scattering angle of —0.4
and 6.4° for all incident angles. This lower-bound to the
scattering angle is representative of all systems studied here.
In addition, our neglect of a gas—liquid potential interaction
prevents the beam from diverting into the back side of the local
mode at close range, as is the normal occurrence with scattering
from the point source of an interaction potential, which would
produce more scattering beyond the specular angle. As men-
tioned in section 2.1, molecular-scale local modes would have
a bumpy atomic topology along the curve in eq 5. The local
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Figure 4. Scattering angle distributions predicted by the stochastic processes (steps) with experimental measurements from high-energy beams
overlaid as points for (a) a glycerol surface at 298 K with p = 0.0038 (measurements by Sinha and Fenn with a 43 kJ mol™! Ar beam'®), (b) a
squalane surface at 290 K with p = 0.04 (measurements by King et al. with a 185 kJ mol~' Xe beam'?), and (c) a PFPE surface at 290 K (measurements
by King et al. with a 185 kJ mol~! Xe beam'?) with p = 0.0026. Although not shown, experimental measurements have been reported beyond the

specular angle in each case; see section 2.3.
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modes considered here have widths of 4 nm and full heights
between 4 and 6 A, whereas for, say, a hydrocarbon liquid, the
atomic bumps would extend above the local mode curve by
the radius of a carbon atom (~0.77 A) at most. Furthermore,
the fluid molecules considered in this study are very large on
the scale of the incoming particle and will tend to be aligned
with the surface during the collision event. Hence, the bumps
can be regarded as a small perturbation on the overall local mode
geometry, and their effect would largely be averaged out as a
result of the impact of a collision being spread over a significant
area of the surface. Nevertheless an incoming particle would
be exposed to a range of slopes, which would broaden the
scattering distribution about the specular angle to some extent.
We also neglect the possibility of a particle undergoing multiple
reflections in the well between two modes, which might result
in the particle appearing to skid along the surface.!” Experi-
mental scattering distributions of high-energy beams do rapidly
decrease beyond the specular angle;'>!%!° therefore, by examin-
ing the consistency between experimental and predicted scat-
tering distributions below the specular angle, we can assess the
quality of the local mode picture of the liquid surface.

3. Results and Discussion

Figure 4 shows scattering angle distributions predicted by the
encountered slope G, for a glycerol surface at 298 K, a squalane
surface at 290 K, and a PFPE (DuPont Krytox 1625 perfluorinated
polyether) surface at 290 K, with experimental points corresponding
to measurements by Sinha and Fenn'® and King et al.'” Table 1
lists the parameter values used in each calculation. Sinha and Fenn
and King et al. used noble gas beams, which are appropriate for
comparison with the present theory. Furthermore, the plotted results
were those obtained with the most energetic beams by these
researchers (a 43 kJ mol~!' Ar beam for Sinha and Fenn and a 185
kJ mol~! Xe beam for King et al.). The measurements by Sinha
and Fenn and King et al. used incident angles of 50 and 65°,
respectively, relative to the surface normal. The optimal values of
p were chosen by manual adjustment until the predicted distribution
most closely matched the experimental distribution. Note that the
interfacial widths in Table 1 are consistent with the widths
anticipated from the root-mean-square displacement arguments in
the Introduction. Quite a lot of data from molten metal surfaces is
available,'®? but they have not been considered in this study
because eq 1 applies only when k > py/n% which is larger than
10° m™! for these liquids.’

In each case, the stochastic processes (and hence local mode
theory) do a reasonable job of tracking the data with an optimal
value of p. Discrepancies occur when trying to estimate the
broadness of the distributions, although this does not necessarily
imply serious inaccuracies in assuming the presence of local modes
at the surface. For example, all three calculations predict very little
density at scattering angles less than 20°, with the largest
underestimation in the glycerol case. However, the beam used by
Sinha and Fenn was relatively slow, which is expected to introduce
a larger inelastic component into the distribution than in the case
of the results of King et al. due to the greater influence of the
potential on the trajectory and the more likely occurrence of
multiple collisions and trapping desorption of the incoming particles
at the surface. This suggests that in the general case, scattering
density below ~20° represent trajectories which are strongly
affected by the potential and energy exchange at the surface and
which are not properly accounted for by the stochastic processes.
Similarly, the predicted distributions for squalane and PFPE peak
sharply at the specular angle, underestimating density between 40
and 60°. These discrepancies are to be expected on the basis of
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the reasoning presented at the end of section 2.3. Indeed, Muis
and Manson,” who successfully modeled rare gas scattering from
molten metal surfaces with a gas—solid surface scattering model,
required account of the gas—surface potential to broaden their
predicted distributions and match experimental data; therefore, one
might anticipate such discrepancies to be apparent with the
assumptions made here. Nevertheless, the essential features of high-
energy gas—liquid scattering distributions, namely, a long tail
leading to a peak at the specular angle, are reproduced reasonably
well by the simplified model, suggesting that the local mode picture
of the liquid surface holds on the scale of a gas—liquid collision
event. In molecular terms, this pictures the topology of a liquid
surface as an irregular, rolling landscape of molecules piled above
the bulk fluid phase in parabolic-shaped clusters, owing to their
correlated motions. This picture supplements the commonly used
concept of a “corrugated” liquid surface,'? a notion which, on its
own, is more natural in the context of a bumpy, ordered solid
surface rather than an irregular and dynamic liquid surface.

The glycerol, squalane, and PFPE data were fitted with p
values of 0.0038, 0.04, and 0.0026, respectively, which is
straightforward to justify because p essentially measures the
frequency at which new local modes intersect the trajectory.
Glycerol and PFPE are highly viscous fluids (viscosities of 1400
and 490 mPa s); therefore, we would expect most thermal
motions from the bulk to be damped well before reaching the
interface, which would reduce the frequency of new local modes
and hence give a very small p. With a viscosity of 34 mPa s,
squalane is considerably less viscous than the above fluids,
permitting more thermal motions to reach the interface and
hence increasing the value of p. Since the correlation between
p and viscosity is not perfect, it is likely that p is also a function
of other fluid parameters. Figure 5 shows representative sample
paths of E, the surface displacement experienced by the
incoming particle’s trajectory at time ¢, for glycerol, squalane,
and PFPE, as computed with these values of p. For glycerol
and PFPE, the beam spends considerable time scanning the
falling phases of the local modes. However, for the squalane
case, the beam is frequently intersected by new local modes.
This shows that the high-energy scattering distributions from
glycerol and PFPE are largely the result of the intersection of
a single local mode with each incoming particle’s trajectory,
whereas for squalane, the distributions result from a succession
of many local modes on the same trajectory. In terms of the
motions of the interfacial molecules, this result can be interpreted
to mean that the frequency of new molecules arriving at a unit
area of a squalane surface is considerably larger than that at a
unit area of a glycerol or PFPE surface. Consequently, the high-
energy scattering angle distributions of PFPE or glycerol would
be attributed to more so by the intersection of the trajectory by
a single group of molecules rather than a rapid succession of
different, independent groups of molecules. In this sense, the
origins of the experimental scattering angle distributions could
be partly attributed to the dynamics of bulk surface energy
exchange for the liquid under consideration.

A possible criticism of this work is that leaving p as an
adjustable parameter permits too much leeway in producing a
scattering angle distribution. The nature of the sensitivity of
the distributions to p does not suggest that this is an issue. As
p tends toward unity, the beam is rapidly intersected by new
local modes with successively larger displacements and spends
almost all of its time reflecting from the flat, top parts of the
local mode. This causes the scattering angle distributions to
cluster very tightly about the specular angle at large p. As p
decreases from unity, the amount of specular reflection de-
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Figure 5. Representative sample paths for E, for (a) glycerol at p = 0.0038, (b) squalane at p = 0.04, and (c) PFPE at p = 0.0026. E, should be
interpreted as the surface displacement experienced by the incoming particle’s trajectory at time .

creases, and the distributions adopt a wide, bell shape centered
at approximately 20° below the specular angle. As p is decreased
further to a critical value, the distributions rapidly take on the
distinct left-skewed shape of an experimental distribution. As
p approaches 0, the beam spends considerable time scanning
the top of a flat, decaying local mode (C, ~ 0), and the
distributions narrow tightly about the specular angle once again.
The observation that p induces only two distinct scattering
regimes which converge to the same result suggests that the
surface tension, density and viscosity carry the essential
information of the model, and that by leaving p as an adjustable
parameter, the model does not become ill-defined and overly
dependent on p. This result is not unexpected because these
three parameters implicitly account for the temperature of the
fluid and the mass of the surface molecules, two features which
are not explicitly accounted for in the above formulation but
are known to affect experimental scattering angle distributions.'":'?
The correspondence found between the measured scattering
distributions and those predicted by the stochastic processes
gives some experimental support to the picture of the gas—liquid
interface provided by local mode theory.

4. Conclusions

It has been shown that local mode theory can provide
reasonable predictions of the scattering distributions of high-
energy beams of atoms incident upon liquid surfaces. In doing
so, the Bessel function bases were explicitly treated as the
scatters. This permitted a probabilistic framework to be used,
without significant loss of rigor, in place of the intractable
deterministic framework which would be required if the
dynamics of the Bessel function superposition were considered
as a whole. The results in Figure 4 are qualitatively correct in
that they show a steady increase in intensity up to the angle
corresponding to specular reflection. The disagreement at small
scattering angles is explicable in terms of a contribution from
inelastic events and low-energy exit trajectories, and as would
be expected, the disagreement is greater for lower-energy beams.
The actual shape of the plots, with a definite plateau at medium
deflection angles, does not agree with experimental data. As
well as the neglect of a gas—liquid potential and atomic-size
“bumps” at the local mode surface, this might also be a
consequence of our choice of the parabolic approximation to a

Bessel function as the two-dimensional shape of a local mode.
At long times, any arbitrary displacement of the surface
eventually comes to resemble a Gaussian dome,” whose slope
decreases with increasing distance from the center of the
disturbance. Such a decrease could well be expected to affect
the shape of the scattering curves by reducing the intensity at
medium-to-large scattering angles, but the final outcome is
difficult to predict, and we are still working on the problem of
incorporating a Gaussian mode into these calculations.

In the present paper, the experimental high-energy scattering
distributions obtained from glycerol, squalane, and PFPE
surfaces have been modeled. To our knowledge, this is the first
time that this has been done from first principles on the basis
of a stochastic model. Scattering distributions from molten metal
surfaces have previously been derived on the basis of gas—solid
scattering theory,?” which corresponds to a short beam pulse at
very high impact velocity, such that surface motions of the liquid
are effectively frozen, and conclusions regarding the dynamics
of the gas—liquid interface cannot be drawn. In the case of
glycerol and PFPE, our calculations have shown that new local
modes in the superposition infrequently intersect the molecular
beam trajectory, so that the angular distributions of scattered
high-energy beams result mainly from the effect of single local
modes on the trajectory. In contrast, new local modes frequently
intersect the trajectory at a squalane surface; therefore, the
angular distribution for a given trajectory results from interac-
tions with a succession of local modes. These inferences, which
are fundamentally hydrodynamic and straightforward to interpret
in terms of the motions of the surface molecules, suggest the
use of a more general gas—liquid scattering theory based on
local mode theory. The obvious next step is to consider inelastic
collisions at low energies, where the gas—surface interaction
potential is important. If this is to be done on the basis of
stochastic processes, the work will inevitably involve the
solution of stochastic differential equations, which is the
direction of our current research.
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